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Transport properties of strongly coupled plasmas

I. M. Tkachenko* and P. Ferna´ndez de Co´rdoba
Department of Applied Mathematics, Polytechnic University of Valencia, Valencia E-46022, Spain

~Received 12 May 1997; revised manuscript received 16 October 1997!

A self-consistent field theory is proposed of transport properties of strongly coupled, fully ionized, multi-
component plasmas. The results are compared with those of simulation and experimental studies@for
molecular-dynamics one-component plasmas see J. P. Hansenet al., Phys. Rev. A23, 2041 ~1981!; for
capillary discharges see J. F. Benage, Jr.et al., Phys. Rev. E49, 4391~1994!; for vaporization of copper wires
in water see A. W. DeSilva~private communication!#. Like in previously considered cases@V. M. Adamyan
et al., J. Phys. D27, 927 ~1994!, and references therein#, the agreement is good or reasonable; the approach
possesses no adjustable parameters.@S1063-651X~98!06302-8#

PACS number~s!: 52.25.Fi
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I. INTRODUCTION

Recently, there has been an increasing amount of w
both theoretical and experimental, on electrical conductiv
of strongly coupled Coulomb systems. The experimen
studies have been carried out by measuring the resistivit
a plasma channel produced by strong electrical~capillary!
discharges in dense materials such as polyurethane@1# and
copper@2,3#.

Recent experimental data, especially those of DeSilva
Kunze and DeSilva, have invited a number of researcher
compare their theoretical predictions with these data;
@4,5# and also@6#.

These theoretical approaches either are based, like@7#, on
generalizations of the Ziman formula for resistivity of meta
~see also@8#! or, as in@9#, construct appropriate interpolatio
formulas between the Ziman and Spitzer theories@8#. One
should also take into consideration the semiempirical res
of @10#.

More references can be found in the review article
Iakubov@11#, where it was also pointed out that there was
theoretical approach capable of describing all experime
data, despite its ambiguity. In an early work@12# a
correlation-function expression for the collision frequen
was found and shown to reduce to the Ziman and Lena
Balescu results in the appropriate limits. The realm of va
ity of this expression is limited by the possibility of applyin
and solving the hypernetted-chain equations.

In this paper we want to show that the theory of transp
coefficients of dense cold plasmas based on the conce
self-consistent field and the generalized random-phase
proximation ~RPA! also possesses correct low- and hig
density limiting properties and is in reasonable, taking in
account a low level of precision of resistivity measuremen
agreement with all available experimental data. This the
considers only fully ionized plasmas and has not yet b
extended to the description of data corresponding to alle
Mott phase transition conditions.

*Electronic address: imtk@iqn.upv.es
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II. MODEL

We consider dense relatively cold plasmas with tempe
ture T of about T>104 K and electronic number densit
ne>1021 cm23 @13#. Under such conditions all characterist
lengths such as the Wigner-Seitz radiusd5(3/4pne)

1/3, the
electronic Debye radiuslDe5(4pnee

2b)1/2 (b215kBT, kB
is the Boltzmann constant!, and the de Broglie wavelengt
l5p\(2b/m)1/2 (\ is the Planck constant! are of the same
order of a few atomic units and the Debye correction to
ionization energy becomes comparable to the~hydrogen!
ionization energy itself. Thus, at least the valent atomic el
trons become collectivized and one cannot distinguish
tween charged and neutral components of the plasma.

The basic idea considered in the present approach is
of self-consistent field: Each electron~carrier! moves in a
self-consistent field generated by all other free charges in
system. The finite values of the transport coefficients re
from the electron’s scattering on the self-consistent fi
fluctuations.

This approach was outlined and applied in@13#. This
work was based on the paper@14# by Edwards, which related
the Lorentz-model expression for the fully ionized plasm
electrical conductivity to the strict quantum-statistical calc
lation involving the Green’s-function formalism with th
self-consistent field potential.

III. THEORY

The starting point for the conductivity calculation is th
quantum-mechanical expression

s5Re
]

]F
j x~rW,t !uF50 , ~1!

where jW(rW,t) is the averaged current density generated in
system by an external electric fieldFW (F,0,0). We presume
that

F~rW,t !5F exp~dt !, ~2!

with d.0,d→01. This specific time dependence of the fie
is introduced to avoid coherent currents inducted at
switch-on momentt52`. Thus
2222 © 1998 The American Physical Society
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j x~rW,t !5Trr̂~ t !H 2
i\e

2mFC†~rW,2`!
]

]x
C~rW,2`!

2
]

]x
C†~rW,2`!C~rW,2`!G J , ~3!

where only the density matrix operatorr̂(t) depends on the
external field~2!, so that

F ]r̂~ t !

]F
G

F50

5
ie

\ E0

`

e2dsds

3E
V

x@C†~rW,s!C~rW,s!,r̂~2`!#drW. ~4!

@(2e) andm are the electronic charge and mass.# Here

2eFe2dtE
V

xC†~rW,s!C~rW,s!drW

is the interaction contribution to the system Hamiltoni
H(t) and

r̂~2`!5exp$2b@H~2`!2f#%,

exp~2bf!5Tr exp@2bH~2`!#, ~5!

f being the system free energy of Helmholtz andV the
system volume. Thus,

s5
e2

2m
ReE

0

`

e2dsdsE
V

dr8W x8Trr̂~2`!

3FC†~rW,2`!
]

]x
C~rW,2`!2

]

]x
C†~rW,2`!

3C~rW,2`!,C†~r 8W ,s!C~r 8W ,s!G . ~6!

The second-quantized wave functionC(rW,t) is express-
ible in terms of the one-electron wave functioncn(rW) of the
one-electron free HamiltonianH0,

H0cn~rW !5«ncn~rW !, ~7!

C~rW,s!5(
n

anexpS 2
i

\
«nsDcn~rW !, ~8!

an being the corresponding annihilation operator, for wh
we have the averaged commutator

Trr̂~2`!@am8
† am ,an8

† an#5dmn8dm8n@wn2wm#, ~9!

where

wn5w~«n!5$exp@b~«n2m!#11%21

is the Fermi-Dirac distribution,m being the electronic sub
system chemical potential.

The trace in Eq.~6! can thus be simplified to get
s5
e2

2m
ReE

0

`E
0

`

d«1d«2E
V

drW8x8

3 K G~rW,rW8;«1!
]

]x
G~rW,rW8;«2!

2G~rW,rW8;«2!
]

]x
G~rW,rW8;«1!L \@w~«1!2w~«2!#

i ~«12«22 i\d!
.

~10!

Here

G~rW,rW8;«!5(
n

cn
†~rW !cn~rW8!d~«n2«!

is the electronic Green’s function of the Schro¨dinger equa-
tion involving the self-consistent fieldV(rW):

2
\2

2m
DG1eV~rW !G5«G1d~rW2rW !,

G~rW,rW8;«!5G~rW8,rW;«!. ~11!

Averaging in Eq.~10! is to be carried out over the self
consistent field fluctuations. The symmetry properties of
Green’s function lead to

s5
pe2\3

m2
ReE

0

`

d«
dv~«!

d« E
V

drW8

3K ]G~rW8,rW;«!

]x8

]G~rW,rW8;«!

]x L . ~12!

An important advantage of formula~12! for s is that it is
analogous to the expression that describes the interactio
electrons with quantized electromagnetic field and there
ready exists the diagrammatic perturbation theory techni
of calculation of the right-hand side of Eq.~12!. In addition,
the present problem lacks the divergence difficulties cha
teristic of quantum electrodynamics and various approxim
methods of the quantum field theory can be applied to ev
ate Eq.~12! without complications.

There is an important difference between Eqs.~1! and~3!,
on the one hand, and Eq.~12!, on the other. The latter per
mits one to carry out the self-consistent field averaging p
cedure before the coordinate integration.

Edwards@14#, who previously obtained Eq.~12!, devel-
oped and applied to it a diagrammatic technique analogou
that of the quantum field theory. He showed that if the int
action operatorÎ could be introduced by the equation

^GG&5^G&^G&1^G&^G& Î ^GG& ~13!

and estimated within a perturbation theory, thefree Green’s
function

G0~rW,rW8;«!5
m

2p2\2

sin~kurW2rW8u!

urW2rW8u
~14!
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@herek5(2m«/\2)1/2# in the presence of the self-consiste
field V(rW) fluctuations should be substituted by

^G~rW,rW8;«!&5
m

2p2\2

sin~kurW2rW8u!

urW2rW8u
expS 2

urW82rWu
g~«!

D ,

~15!

whereg(«) is the electronic mean free path. Then integ
tion in Eq. ~12! yields

s52
2me2

3p2\3E0

`

E
dw~E!

dE
g~E!dE. ~16!

Since, as in the kinetic theory,

g~E!5~2E/m!1/2t~E!, ~17!

t(E) being the mean relaxation time, Eq.~16! coincides with
the Lorentz formula

s52
4e2

3mE
0

`

E dE
dw~E!

dE
r~E!t~E!, ~18!

where r(E)5(2m3E)1/2/2p2\3 is the density of one-
electron states in the energy space. Generally speaking
mean free pathg(E) or the mean relaxation timet(E) of Eq.
~18! is determined by the exact pairwise scattering cross
tion. Notice also that the averaging over the self-consis
field thermal fluctuations includesconfigurationsfor which
the conductivity is infinite. We attribute to such contributio
of V(rW) a negligible statistical weight.

IV. CALCULATION OF CONDUCTIVITY

It was shown in@14# that Eq.~15! for the averaged one
electron Green’s function̂G& is a result of summation o
infinite series in powers of the pairwise-interaction transp
cross section. That is why, though we substitute the latte
its first Born approximation and thus neglect a good dea
diagrammatic contributions tôG& @13#, we can consider
Coulomb systems with relatively strong interactions. Th
we express the inverse mean relaxation time in terms of
self-consistent field correlation function

t21~E!5
me2

4p~2mE!3/2E0

Q

q3dqE
2`

`

^uV̂~qW ,v!u2&dv.

~19!

HereQ5(8mE/\2)1/2, the momentum\Q being the maxi-
mum possible variation of the electronic momentum a
result of the scattering process, and

V̂~qW ,v!5
4pe

q2«~q,v!
(

a
ka~q!r̂a~qW ,v! ~20!

is the field potential operator complete Fourier transfor
r̂a(qW ,v) being thea-species density operator in (qW ,v) space
and «21(q,v) the plasma dynamic screening function. T
system is presumed to contain electrons (e) andp ionic spe-
cies (i 1 ,i 2 , . . . ,i p) characterized by their respective for
factorska(q), a5e,i 1 ,i 2 , . . . ,i p , which describe the inter
-
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nal charge distribution of the speciesa, ke521, and
k i(0)5Zi , the charge number of ionsi . The field potential
correlation function thus equals

^uV̂~qW ,v!u2&5S 4pe

q2«~q,v!
D 2

(
a,b

ka~q!kb~q!Sab~qW ,v!.

~21!

The dynamic structure factor of the speciesa andb,

Sab~qW ,v!5^r̂a* ~qW ,v!r̂b~qW ,v!&, ~22!

is related, by the fluctuation dissipation theorem@15#

Sab~qW ,v!5
\

2p
coth~b\v/2!ImXab~qW ,v!, ~23!

to the partial density-response~Green’s! function

Xab~qW ,v!5Pa~q,v!dab2Pa~q,v!Pb~q,v!Jab~qW ,v!,
~24!

Jab~qW ,v!5
4pe2

q2

ka~q!kb~q!

«~q,v!
~25!

being the full vertex part andPa(q,v) the a-species polar-
ization operators, which also determine the dielectric fu
tion in Eq. ~20! and

«~q,v!511
4pe2

q2 (
a

ka
2~q!Pa~q,v!. ~26!

Substitution of Eqs.~21!–~25! into Eq. ~19! and integra-
tion @15# yields

t21~E!5
4pme4

b~2mE!3/2E0

Qdq

q (
a,l

ka
2~q!Pa~q,l !

«3~q,l !
. ~27!

~A corresponding expression from@16# is valid for hydrogen
plasmas only.! Here thel summation is spread over the pole

V l52p l /b\ ~ l 50,61,62, . . . ! ~28!

of coth(b\z/2) on the imaginaryz-axis, i.e., over the Mat-
subara frequencies@17#, andPa(q,l ) are the real parts of the
Pa(q,v) operators atv5 iV l . Equation~27! together with
Eq. ~18!, forms a general algorithm of conductivity calcula
tion, as soon as specific approximate expressions are use
the density-response functions and the polarization opera

In our computations we evaluated the real partPa(q,l ) of
the a-species polarization operator beyond the stand
RPA, using the temperature-dependent static local-field c
rection Ge(q) @18,16,19# parametrized to satisfy both th
compressibility sum rule@with the electronic subsystem
compressibility determined from the one-component plas
excess interaction energy determined by the Monte C
~MC! simulation@20## and the long-wavelength limiting con
dition of Kimball @21#

Ge~q!5Ge~z!5@b1a/~2z!2#21. ~29!

Hereb5@12ge(0)#21 anda was estimated as in@19#:
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a52~12p2!21/3S A

9
1

B

12
G211

2C

27
G24/31

5D

54
G22/3D 21

.

~30!

HereG5be2(4pne/3)1/3 measures the rate of Coulomb co
pling in the system,z5q/kF , kF5(3p2ne)

1/3 is the Fermi
wave vector, and A520.899 374 9, B520.224 469 9,
C520.017 874 7,D520.517 575 3,@20#.

The model parameterge(0), which is the zero-separatio
value of the electronic radial distribution function was det
mined by a self-consistent procedure: It was computed v
simultaneous solution of two integral equations

Se~z!5 (
l 52 l 1

l 1 Pe~z,l !

«e~z,l !
, ~31!

ge~0!51112E
0

`

~Se~z!21!z2dz. ~32!

In Eq. ~31! the summation is spread over the Matsubara
mensionless frequencies

v l5p l /2Dz; ~33!

«e~z,l !511
G

~12p2!1/3

Pe~z,l !

z2
~34!

is the electronic dielectric function; the value ofl 1 in Eq.
~31! was determined by the numerical precision.

Here D5u215b\2kf
2/2m is another dimensionless pa

rameter measuring the plasma degeneracy rate; notice
the Brueckner parameter

r s5Gu/0.543. ~35!

Pe(z,l ) in Eq. ~31! is the dimensionless polarization op
erator Pe(q,l )5Pe(q,iV l) with the local-field correction
included:

Pe~z,l !5Pe
0~z,l !S 12

G

~12p2!1/3

Ge~z!Pe
0~z,l !

z2 D 21

.

~36!

The RPA dimensionless polarization operatorPe
0(z,l ) can be

calculated~for each value of density and temperature,z and
l ) by simple integration@22#,

Pe
0~z,l !5

3u

4zE0

` y dy

ey2/u2h11
lnUz1y1 iv l

z2y1 iv l
U, ~37!

while the dimensionless chemical potentialh5bm is deter-
mined by the normalization condition

E
0

` t1/2

e~ t2h!11
5

2

3
u23/2. ~38!

Thus we used in Eq.~27!

Pe~q,l !5nebPe
0~z,l ! ~39!

for the electronic polarization operator and@8#
-
a

i-

hat

P i~z,l !5bnd l ,0S 12
G

~12p2!1/3

Gi~z!

z2 D 21

~40!

with

Gi~z!5$b@«e~z,l !#1a/~2z!2%21, ~41!

for the ionic one (d l ,m is the Kronecker delta symbol! and
thus obtained a closed expression for the conductivity co
ficient. Notice that the influence of the value ofge(0) proved
to be quite small; see, nevertheless, Sec. VII A.

V. LIMITING CASES

Despite the approximations made to obtain our express
for the plasma conductivity, it possesses correct limiti
forms corresponding to the cases of dilute gas plasma
metal-density Coulomb systems. In particular, if we omit t
electronic contribution in Eq.~27! and neglect the screenin
effects~i.e., set«(q,l )51) and the momentum dependen
of the ionic form factors, the sum on the right-hand side
Eq. ~27! becomes a constant

b(
i

Zi
2ni .

If further we presumeE to be equal to the mean kineti
energy of an electron, we retrieve from Eq.~27! the Cou-
lomb logarithm, and Eq.~18! with w(E) substituted by the
Boltzmann distribution takes the form of the Spitzer formu
without corrections due to electron-electron interactions@23#.
We have estimated the relative weight of this last correcti
In particular, in the dilute plasma regime, we calculated
conductivity contribution due to scattering on ions only. H
drogenlike plasmas were considered in these computat
with ne5Zni and the screening function was substituted
its long-range static limiting form

«~q,v!→~11q2/ks
2!21

with the screening lengthks
21 chosen to be either the elec

tronic Debye radiusk1
215(4pnee

2b)21/2 or the complete
Debye radiusk2

215@4p(11Z)nee
2b#21/2. Thus we em-

ployed instead of the relaxation time of Eq.~27! the limiting
expression

ts
21~E!5

4pmZ2e4ni

~2mE!3/2 E
0

Q q5dq

~q21ks
2!3

. ~42!

These estimates are provided in Table I, labeleds1 and
s2, along with the results of our complete calculations,
beleds and obtained as explained in Sec. VII C. It is se
that the electron-electron interactions are responsible for
to 45% of the resistivity value.

On the other hand, if we consider the low-temperatu
limiting case (b21→0), the Fermi-Dirac distribution deriva
tive in Eq. ~18! turns into2d(E2EF) with EF5\2kF

2/2m
andQ becomes equal to 2kF , so that we immediately regain
the Ziman specific resistance formula@24#.

Notice that no special effort was doneab initio to guar-
antee the correct limiting behavior of our model. Neverth
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TABLE I. Relative contributions to the plasma conductivitys of Table III, ss (s51,2), are calculated
according to Eq.~18! but with ts(E) from Eq.~40! with k15A4pnee

2b andk25A4p(11Z)nee
2b, respec-

tively. T,ne are the temperature and electronic number density in copper andZe is the effective ion charge

T ~kK! ne310221 (cm23) Z s31024 ~S/m! s131024 ~S/m! s231024 ~S/m!

20 3.18 1.3 2.12 3.13 4.07
20 7.69 1.2 2.94 4.55 6.34
30 4.07 1.6 3.03 4.02 5.21
30 6.03 1.6 3.42 4.47 5.97
40 4.33 2.0 3.66 4.37 5.72
n
io

th

itl

io

id
t
a
d
c

p-

q

n
in

cu

r-
on

a

nd

ub-

ere

ndi-

ies
nic

c-

r-

re

ns
ces
ial.
less, further studies of the limiting behavior of our model a
a comparison with other general expressions for the collis
frequency~e.g.,@12#! or for the conductivity itself~see@25#!
are to be carried out.

In general, the difference between our expression and
of Ziman~widely used lately to calculate conductivity@4–6#!
is that we include the energy-dependent relaxation time@Eq.
~27!# and the Ziman formula takes it atE5EF . In addition,
we have the electron-electron interaction included explic
via the structure factorSee(q,v).

The s(T) dependence at constant density~see @16#! is
characterized by a minimum corresponding to a transit
from the low-temperature regime with decreasing~with
growing T) conductivity characteristic for metals and liqu
metals~Ziman regime! to that of increasing conductivity a
higher temperatures, characteristic for dilute plasm
~Spitzer regime!. Thermodynamic conditions were specifie
in @16# corresponding to the domain of values of the ele
tronic concentration and the plasma temperature~in hydro-
gen plasmas! where our expression asymptotically a
proaches the Spitzer regime withsSp(T)}T3/2.

Finally, relative contributions due to various factors in E
~27! were also estimated. We found that at least forT520
kK and ne>1021 cm23 ~conditions considered earlier i
@13#!, the value of conductivity calculated with the sum
Eq. ~27! substituted by

@Pe~q,0!1Z2P i~q,0!#/«~q,0!

~as in @13#! was about 50% higher than the complete cal
lation results given in Tables I and III.

VI. OTHER TRANSPORT COEFFICIENTS

If the initial state of plasma is not far from that of the
modynamic equilibrium, the generalized transport equati
for the mean current densityJW and for the thermal fluxQW can
be written as@26#

JW5e2K0FW 1T21eK1~2¹W T!, ~43!

QW 5eK1FW 1T21K2~2¹W T!. ~44!

T is the plasma temperature and no magnetic effects
taken into account. The transport coefficientsKi ( i 50,1,2)
in Eqs. ~43! and ~44! satisfy the Onsager relations@26# and
within the same approximation instead of Eq.~18! we have
d
n

at

y

n

s

-

.

-

s

re

Ki52
4

3mE
0

`

Er~E!t~E!
dw~E!

dE
~E2m! idE, ~45!

wherem is the electronic subsystem chemical potential a
t(E) is the same relaxation time defined by Eq.~27!. The
transport coefficientK0 determines the static conductivity

s5e2K0 , ~46!

while the static thermal conductivity

k5
1

T
~K22K1

2/K0! ~47!

and the thermal electromotive potential

a5K1~eTK0!21. ~48!

In the case of complete degeneracy of the electronic s
system the conductivitiesk and s are related by the
Wiedemann-Franz law

k

s
5

p2

3 S kB

e D 2

T. ~49!

If the degeneracy is incomplete, like in our case, th
appear temperature-dependent corrections to Eq.~49!. Nev-
ertheless, we will see that these corrections under the co
tions we consider are quite small.

VII. RESULTS AND CONCLUSIONS

Extensive studies of electrical and thermal conductivit
in a wide range of variation of temperature and electro
density in hydrogenlike plasmas~with ne5Zni) were carried
out in @16,27,28#. Here we report our results on the condu
tivities obtained for the conditions corresponding to~i!
model Coulomb plasmas@29#, ~ii ! capillary discharges in
polyurethane@1#, and~iii ! copper plasmas obtained by vapo
izing copper wire in a water bath@3#.

A. Microscopic simulation of hydrogen plasma

Fully ionized strongly coupled hydrogen plasmas we
simulated using the method of molecular dynamics~MD! in
well-known studies by Hansen and McDonald@29#. Quan-
tum effects were taken into account in these simulatio
through the use of effective pair potentials; at short distan
these differed significantly from the bare Coulomb potent
Reasonable agreement with the conductivity results of@29#
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TABLE II. sL* are the results of the extrapolation procedure according to Eq.~50! andsD* were calculated
in terms of the diffusion coefficients as explained in Sec. VII A.sCp* are the results of the present wor
computed using the Coulomb potential andspp* represent our results calculated with the model pseudo
tential suggested in@31# and employed in@29#; sBRD* stands for the results of@12#.

ne310224 (cm23) T31025 ~K! G r s sL* sD* sCp* spp* sBRD*

1.611 1.579 2.0 1.00 1.1 0.60 0.59 1.20 3.72
1.610 6.315 0.5 1.00 2.15 0.86 1.00 1.40 2.13
25.170 15.79 0.5 0.40 3.6 1.47 1.80 2.70 4.13
re

-

i
ec
by

in

e

ts

th

x

o

th
k
-
E

ced
, so

In

qual
of

es

are
vior
l of
n-

ble

ell-
ity

ge
was obtained in@12# ~see Table II, where the results a
presented for the dimensionless conductivitys* 5s/vpe
(vpe5(4pnee

2/m)1/2 being the electronic plasma fre
quency!. The dynamical results of @29# were successfully
considered in@30#.

The static conductivity of model plasmas was obtained
@29# on the basis of the Nernst-Einstein law in terms of el
tronic and ionic diffusion coefficients directly estimated
MD simulations:

sD5bnee
2~Di1De!. ~50!

In addition,s was determined, at least forG52 and r s
51, through the electric current autocorrelation function
the relaxation time approximation@29#.

Notice that the simulation data forG52 andr s51 were
obtained in@29# by MD calculations; in this case the valu
sD* was calculated as

sD* 5
3G

4pS m

M DDi* 1De* , ~51!

De* and Di* being the dimensionless diffusion coefficien
determined in@29#. Other results were found in@29# by ex-
trapolation. In these casesDi* was set equal to zero~not
determined in@29#!; M is the proton mass.

The value ofsL* was obtained in@29# by a limiting pro-
cedure over the dynamic conductivitys(k,v),

sL5 lim
v→0

lim
k→0

Res~k,v!, ~52!

and thus related via the fluctuation-dissipation theorem to
dynamiccharge-chargestructure factor. The limiting value
of Eq. ~50! could be found in@29# only by extrapolation of
long-wavelength MD data~see Table IV of@29#!. The point
with G52.0 was the only point really simulated in@29#. The
other two points were obtained in this work using an e
trapolation procedure; its precision is unknown to us. W
would rather not considersL* 5sL /vpe ~characterized in
@29# as thetrue value! to be much more reliable thansD* .

We computed the conductivity of strongly coupled hydr
gen plasma for all three cases considered in@29# and using
the static local field correction of Eq.~29!. The calculations
were carried out for both the Coulomb interaction and
model pseudopotential suggested by Deutsch and co-wor
in @31# and employed in@29#. In the case of Coulomb inter
actions the relaxation time was calculated according to
~27! with ka

2(q)51,a5e,i ; see thesCp* data in Table II.
n
-

e

-
e

-

e
ers

q.

The model pseudopotential of@31,29# is determined by
the interacting particles charge numbers and their redu
masses. The species form factors cannot be introduced
that Eq.~21! should be modified:

^uV̂~qW ,v!u2&5S 4pe

q2«~q,v!
D 2

(
a,b

Yab~q!Sab~qW ,v!,

~53!

where

Yab~q!5Yba~q!5ZaZb@11~qlab!
2#21, ~54!

«~q,v!511
4pe2

q2 (
a

Yaa
2 ~q!Pa~q,v!, ~55!

and

lab5F\b

2p
~ma

211mb
21!G1/2

, ~56!

ma andZa being thea species mass and charge number.
hydrogen plasmasme5m and mi5M , while Ze521 and
Zi51.

The pseudoparticles screened interaction energy is e
to 4pe2Yab /q2«(q,v) and the relaxation time expression
Eq. ~27! becomes more complicated:

tpp
21~E!5

4pme4

b~2mE!3/2E0

Qdq

q (
l

@Yee
2 Pe1Yii

2P i

12~YeeYii 2Yei
2 !PeP i #/«

3~q,l !. ~57!

The results of our computations with all these chang
included, labeledspp* , are also provided in Table II. We
cannot overestimate the fact thatspp* virtually coincides with
the true conductivity valuesL* at G52.0. More simulation
results on both transport and dynamic plasma properties
needed to decide whether, and to what extent, the beha
of the classical pseudoparticles with the pseudopotentia
@31,29# imitates that of the true quantum system. We co
clude that overall satisfactory agreement with availa
plasma-simulation data is achieved.

B. Capillary discharge in polyurethane

Dense strongly coupled plasmas were created in a w
diagnosed uniform discharge in polyurethane with dens
1.26531022 g/cm3 and temperatures in the 25–30 eV ran
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TABLE III. s are the results of the present work, the experimental valuessexpt are by DeSilva@3#, T and
r are the temperature and mass density of copper,Ze is the effective ion charge, andf is the dimensionless
Wiedemann-Franz ratio~59!.

T ~kK! r (g/cm3) Z G u sexpt31024 ~S/m! s31024 ~S/m! f

20 0.7930 1.5 2.97 1.020 5.1 10.50 0.99
10 2.4550 2.3 10.12 0.167 32.1 21.00 0.99
14 1.2036 1.7 5.15 0.460 9.5 11.95 0.98
20 0.1557 1.2 1.62 3.240 2.2 4.12 1.11
26 0.0580 1.4 0.94 7.340 3.9 3.44 1.11
30 0.0400 1.6 0.75 9.930 4.8 3.42 1.11
40 0.0230 2.0 0.51 16.50 5.8 3.66 1.10
10 1.3546 1.7 7.51 0.304 8.3 11.27 0.99
14 0.3500 1.1 2.95 1.401 1.3 4.90 1.05
20 0.0260 1.3 0.92 10.13 2.0 2.12 1.11
10 2.2616 2.2 9.70 0.182 27.1 19.10 0.99
14 0.9704 1.5 4.60 0.577 6.4 9.86 0.99
16 0.1323 1.1 1.87 3.060 1.2 3.27 1.11
20 0.0680 1.2 1.62 5.630 2.2 2.94 1.11
30 0.0270 1.6 0.66 12.61 4.4 3.03 1.11
-
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@1#. These results were compared in@1# with several dense
plasma theories@32,33,12,34# and showed to be in a signifi
cant disagreement.

Preliminary experiments of this type were reported
@35–37#. Reasonable agreement with these data was obta
in @16#, especially atT517–18 eV@37#, but within the hy-
drogen model.

An effective average ionic charge numberZ52.3 was ob-
tained in@1# presuming Saha equilibrium. This permitted
to carry out the calculation of the electrical conductivity o
multiply ionized two-component plasma in the rangene
5(4.825.2)31021 cm23 and T5(2.524.0)3105 K. The
same local field correction as in Sec. VII A was employ
with ge(0)50 ~see@19# and above!.

The experimental data of@1# ~provided graphically for the
resistivity! range between 2.03105 and 3.33105 (V m)21.
Our results varied between 3.33105 (V m)21 ~for ne55.2
31021 cm23 and T52.53105 K! and about 106 (V m)21

~for ne54.831021 cm23 and T54.03105 K!, taking the
value of s55.03105 (V m)21 at about 33105 K and ne
5531021 cm23. This last value is characteristic for the r
sults of dense plasma theories@32,33,12,34# referred to in
@1#. Notice that the lowest conductivity value reached
these theories is about 4.23105 (V m)21 @1# and also that
under these specific conditions, i.e., atG50.18–0.12, the
dimensionless~normalized to the plasma frequency! com-
puted plasma conductivity can be fitted to a simple poten
function of the coupling parameterG only:

s* ~G!5u/Gv ~58!

with u51.7031022 andv52.27.

C. Discharges in water

We have also carried out a broad comparison with
conductivity data measured by vaporizing copper wires i
water bath@3#. Plasma densities observed ranged from ab
2.5 g/cm3 down to 0.025 g/cm3 and temperatures varied be
ed

l

e
a
ut

tween 10 and 30 kK. The ionization state used by DeSi
and in our computations was taken from the Fermi-Thom
model by More@38#. The plasma coupling and degenera
parameters ranged fromG50.66 toG510.12 andu50.167
to u516.5, respectively; see Table III.

We considered three shots of data of@3# and calculated
both electrical and thermal conductivities. The results
provided in Table III, where f is the dimensionless
Wiedemann-Franz ratio

f 5
3

p2
~ke2/skB

2T!. ~59!

First of all, we observe a good level of verification of th
Wiedemann-Franz law: We neglected the ionic transport
reasonable 30% agreement is observed in the majority
points, especially at higher densities. A factor of 2–3 d
agreement detected at 14–16 kK and low densities is at
utable to the possible onset at the conductor-dielectric ph
transition: The copper plasma begins to undergo a trans
mation from the fully ionized state corresponding to o
model into the partially ionized state where charge-atom
teractions are to be taken into account. TheSESAMEcode ‘‘is
increasingly inaccurate with the onset of strong Coulo
interaction’’ @39# and cannot include the possible Mott-typ
phase transition. The precision level of this code is n
known. In addition, the experimental measurements are q
difficult @2,3# and we believe that an overall precision of th
experimental data of@3# is of the order of 30–100 %.

Notice once more that no adjustable parameters were u
in our computations. The only input data were the plas
temperature (T) and density (r) ~provided by theSESAME

code; see@3#! and the precalculated charge numberZ ~see
above!.

Calculations were carried out for different values of t
local-field correction static parameterge(0), ranging accord-
ing to its definition between zero and unity. No apprecia
dependence on the value ofge(0) was detected; further cal
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culations were carried out withge(0) set to be zero. Thus th
only experimentaldata our results are based on is the co
puter fit to the one-component plasma interaction energy
tained by MC simulations@20#.

In conclusion, a theory of transport coefficients of ful
ionized strongly coupled plasmas, based on the s
consistent field concept and having no adjustable parame
is presented. The self-consistent field theory suggeste
@13#, outlined in detail, modified, and applied here to vario
model and real plasmas, is not based on the solution o
netic equations. In particular, we do not have to introdu
into our expression the order of 2 correction@40# ~see also
@12,7,8#! that takes into account higher-order Sonine polyn
e

,

.

s.
-
b-

lf-
rs,
in

s
i-
e

-

mials contributions to the solution of the kinetic equatio
The theory is applicable to multiple-component~non-
hydrogen-like! plasmas with variable ionization states, and
shown to possess correct low-density~Spitzer! and metal-
density~Ziman! limiting forms.
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@9# G. Röpke and R. Redmer, Phys. Rev. A39, 907 ~1989!.

@10# W. Ebeling et al., Thermophysical Properties of Hot Dens
Plasmas ~Teubner Verlagsgeselschaft, Stuttgart, 1991!, pp.
210–212.

@11# I. T. Iakubov, Usp. Fiz. Nauk163, 35 ~1993! ~in Russian!.
@12# D. B. Boercker, F. Rogers, and H. E. DeWitt, Phys. Rev. A25,

1623 ~1982!.
@13# V. M. Adamyanet al., Teplofiz. Vys. Temp.18, 230 ~1980!

@High Temp.18, 186 ~1980!#.
@14# S. F. Edwards, Philos. Mag.3, 1020~1958!.
@15# S. Ichimaru, Statistical Plasma Physics~Addison-Wesley,

Reading, MA, 1992!, Vol. I.
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